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Abstract. The physical properties of paramagnetic Mo(V) organometallic radical cation salts,
[Cp2Mo(dmit)+•][X−], are investigated through the study of two series of solid solutions
[Cp2Mo(dmit)+•][X−](x)[PF−6 ](1−x) incorporating two kinds of anions (AsF−6 /PF−6 or SbF−6 /PF−6 ). The
combination of EPR and X-ray diffraction is used to specify the nature of the structural phase transitions
which occur in the paramagnetic phase and to determine the corresponding (T, x) phase diagrams. Finally,
antiferromagnetic resonance is studied to probe the low temperature antiferromagnetic ground state. In
the last part of the paper, the observed complex phase diagram is analyzed by considering a compressible
model with at least two independent modes of compression. We conclude that the larger compressibilities
are associated with the smaller anions.

PACS. 76.30.-v Electron paramagnetic resonance and relaxation – 61.50.Ks Crystallographic aspects of
phase transformations – 75.50.Ee Antiferromagnetics

1 Introduction

In a previous paper [1], hereafter labelled as paper I, a se-
ries of three S = 1/2 radical cation salts of Cp2Mo(dmit)
were described with the increasingly larger PF−6 , AsF−6
and SbF−6 closed-shell octahedral anions. These three
compounds crystallize in the orthorhombic system, space
group Cmcm at room temperature. Upon cooling a sec-
ond order structural phase transition at T1 (PF−6 : 120 K,
AsF−6 : 142 K, SbF−6 : 175 K) to a triclinic system is
observed, which also reveals a twinning of the crystals.
Therefore, the orthorhombic structure can also be de-
scribed as the combination of two monoclinic elements,
as shown in Figure 1. As in paper I, this monoclinic de-
scription which allows a simpler description of the physical
properties will be used through the following of this paper.

In the three compounds, the structural phase transi-
tion which occurs at T1 is accompanied by the apparition
of satellite peaks characteristic of a superlattice of wave
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vector q∗1 = (0, 1/2, 1/2)centered. Here, the label “cen-
tered” indicates that this superlattice is characterized by
the presence of a pseudo-extinction which finds its origin
in the pseudo centering of the novel a′, b′, c′ = a, 2b, 2c
triclinic unit cell. The corresponding diffraction conditions
then write: k′+ l′ = 2n. This structural phase transition is
also revealed by a drastic increase of the EPR linewidth.
At lower temperature, two strikingly different behaviours
were found:

• In the AsF−6 and SbF−6 salts, the same superlattice
is observed down to 10 K from X-ray study although
another inflexion point is found in the EPR linewidth
temperature dependence.
• In the PF−6 salt, a first order phase transition is found

at T2 = 89 K with the appearance of a novel su-
perlattice at a wave vector q2 = (0, 1/2, 0). This
phase transition is also revealed by a step in the EPR
linewitdth.

At still lower temperature all three compounds
reach an antiferromagnetic ground state, identified by
static susceptibility measurements and antiferromag-
netic resonance (AFMR) experiments below the Néel
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Fig. 1. Comparison of the orthorhombic and monoclinic descriptions of the room temperature crystal structure.

temperature: TN = 11.5 K, 9.5 K and 7.5 K in the
pure PF−6 , AsF−6 and SbF−6 salts respectively. The main
question which arises from paper I is the following:
why is there such a different behaviour between the
PF−6 salt and the two other compounds? More gener-
ally, what is the origin of these structural transitions?
Therefore, we have prepared two series of solid solu-
tions [Cp2Mo(dmit)+•][X−](x)[PF−6 ](1−x) where X− is

AsF−6 or SbF−6 . As for the pristine samples, these salts
were obtained by electrocrystallization of the neutral
Cp2Mo(dmit) in CH2Cl2 solutions of n-Bu4N+X− and
n-Bu4N+PF−6 in the desired molar proportions
with a total 0.05 M electrolyte concentration,
as described for the pure salts [1]. This alloy

strategy has been particularly successful in the
study of one-dimensional superconductors (Bech-
gaard salts) such as (TMTSF)2(ReO4)(1−x)(ClO4)(x) [2],
[(TMTSF)(1−x)(TMTTF)(x)]2ReO4 [3] or (TMTTF)2

(X)(1−x)(PF6)(x) (with X−: AsF−6 or SbF−6 ) [4].

The complete study of the corresponding binary phase
diagrams is expected to provide pertinent informations
on the evolution of the physical properties with x through
combined EPR and low temperature X-ray experiments.
These results, together with antiferromagnetic resonance
data, are described in the experimental part of the pa-
per. The last part will be devoted to the discussion of the
experimental phase diagrams, mostly through symmetry
arguments and Landau theory.
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Fig. 2. Effect of alloying on the volume of the unit cell; (a) PF−6 /AsF−6 , (b) PF−6 /SbF−6 alloys.

2 Experimental results

2.1 Structural characterization

As a first structural characterization, the room tempera-
ture unit cell of the different solid solutions has been deter-
mined. All samples are isostructural with the pristine salts
and exhibit unit cell parameters which evolve continuously
between those of the pure salts. Figure 2 gives the evolu-
tion of the unit cell volume for the two series. The linear
dependence obtained in the case of the AsF−6 /PF−6 alloys
(Fig. 2a) suggests a random mixing of the two kinds of an-
ions in the solid. Accordingly, these series of solid solutions
will be compared in the following with the pristine salts
considering that [Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) is
equivalent to a pure sample with an anion of intermediate
size. Figure 2b shows that the same assumption is also
valid in the [Cp2Mo(dmit)+•][SbF−6 ](x)[PF−6 ](1−x) series
as long as x is smaller than 0.5 (this will be the most
interesting part of the phase diagram in the following).

2.2 EPR results

It has been shown in paper I that EPR is relevant to probe
the low temperature properties of these materials. Indeed,
the EPR linewidth temperature dependence is the easiest
way to locate the structural phase transitions [5–7] and to
specify their second or first order character. We therefore
use the same technique to study the two series of solid
solutions.

Temperature dependence of the EPR linewidth of
[Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) for six selected x
values are given in Figure 3. Qualitatively, the same
behaviour, reminiscent of the one found for the pure
[Cp2Mo(dmit)+•][PF−6 ], is observed for all x values, even
up to x = 0.99 (i.e. 1% PF−6 in the pure AsF−6 salt):
an inflexion point at a temperature T1, a sharp decrease
of the linewidth at T2 and finally a precursor effect close
to the Néel temperature TN. These temperatures for the
different alloys are given in Table 1. Note that the pure
AsF−6 salt is the only one to exhibit a single structural

phase transition at T1. By analogy with the pure salts,
and anticipating the X-ray study, the sharp decrease of
the EPR linewidth at T2 suggests the occurrence of a first
order transition. Thus, our data imply a line of first order
transitions as x goes from 0 to 0.99. We know however
from paper I that this phase transition does not exist at
x = 1 (for the pure AsF−6 salt) and the question of how
this line ends near x = 1 remains open.

Experimentally, it is hopeless to prepare with enough
accuracy samples with x between 0.99 and 1. We can
however investigate more closely the linewidth EPR dis-
continuity at T2 as a function of x. Indeed, for a first
order phase transition, we expect the amplitude of the
linewidth jump to be a relevant information. Accord-
ingly, we plot in Figure 4 the normalized linewidth jump
(∆Hmax −∆Hmin)/(∆Hmax +∆Hmin) observed at T2 as
a function of x. Two different regimes are found. First,
a slight increase with a maximum for x ≈ 0.9; then a
strong decrease for 0.9 ≤ x ≤ 0.99. This result suggests
a crossover close to x = 0.9. This would mean that the
first order character of the transition decreases rapidly as
x approaches 1 as it is expected if the first order line ends
with a liquid/gaz-like critical point. Within this scenario,
the localization of this critical point close to x = 1 would
be totally accidental and not related to a possible disorder
effect due to the anion substitution.

In order to test this assumption, a new series
of solid solutions incorporating the PF−6 and SbF−6
anions were prepared. Since the SbF−6 anion is no-
tably larger than the AsF−6 one, we expect a shift
of the critical point to a smaller x value in the
PF−6 /SbF−6 phase diagram. The EPR linewidth of se-
lected [Cp2Mo(dmit)+•][SbF−6 ]x[PF−6 ](1−x) solid solutions

are given Figure 5. In this new series, the “PF−6 like” be-
haviour is only observed below xc = 0.35, while a tem-
perature dependence similar to the one found for the pure
SbF−6 or AsF−6 salts is found above xc = 0.35. The char-
acteristic temperatures deduced from these data are given
in Table 2. As anticipated, the substitution of SbF−6 for
AsF−6 allowed us to indeed expand the phase diagram and
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Fig. 3. Temperature dependence of the EPR linewidth in the [Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) series with the magnetic
field applied in the c∗ direction.

hence to shift the critical point far away from the borders
(x = 0 or x = 1).

For x ≤ 0.35, the first order character of the phase
transition is analyzed through the evolution of the normal-
ized linewidth jump (Fig. 6). A crossover is now observed
around x = 0.24 and the drop found close to xc is also in
favor of a critical point. Thus, we confirm the analogy with
the first PF−6 /AsF−6 solid solutions and conclude that the
topology of the two phase diagrams is similar. X-ray data

are now necessary to confirm the character of the phase
transitions and to determine the nature of the different
phases involved.

2.3 Low-temperature X-ray studies

Because of the analogy between the two series, this study
was only developed on the PF−6 /AsF−6 solid solutions. As
for the pure samples, this work has been performed on
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Fig. 4. Normalized EPR linewidth jump at T2 in the [Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) series.

Fig. 5. Temperature dependence of the EPR linewidth in the [Cp2Mo(dmit)+•][SbF−6 ](x)[PF−6 ](1−x) series with the magnetic
field applied in the c∗ direction.
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Table 1. Cell parameters, phase transition temperatures and AFMR experimental parameters (defined in the text, see 2.5) of
the solid solutions [Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x).

x a (Å) b (Å) c (Å) V (Å3) T1 (K) T2 (K) TN (K) B−(Gauss) B+(Gauss) 2θ(◦) I[B2]/I[B1]

Cp2Mo(dmit)PF6 8.954(1) 20.596(3) 10.112(3) 1864.9(6) 120 89 10.5 6200 7000 18 0

0.20 8.950(1) 20.623(3) 10.133(3) 1870.3(6) 126 88 10.5 18 0

0.40 8.958(1) 20.612(8) 10.142(1) 1872.6(8) 130 83 10.3 6200 7000 18 0

0.50 133 78 10 18 0

0.60 8.968(1) 20.646(3) 10.168(5) 1883.0(8) 134 73 10 6200 7000 18 0

0.65 8.969(1) 20.640(4) 10.173(3) 1883.1(8) 10 6300 7000 18 0.4

6200 7400 70

0.70 8.972(1) 20.661(3) 10.177(2) 1886.6(5) 137 67 10 18/70 0.55

0.80 8.972(2) 20.657(5) 10.185(4) 1887.7(9) 140 65 10 18/70 0.6

0.90 8.969(2) 20.660(7) 10.206(5) 1891.0(9) 141 57 10 6300 7000 18 0.8

6100 7400 73

0.94 8.983(1) 20.619(3) 10.213(5) 1891.6(9) 142 54 9.5 18/75 0.7

0.98 142 50 9.5 6200 7000 18 3.8

6200 7400 77

0.99 142 49 9.2 6200 7200 18 2.6

5800 7300 78

6700 7900 78

Cp2Mo(dmit)AsF6 8.9779(9) 20.647(2) 10.225(1) 1895.5(3) 142 9.2 6000 7200 78 ∞

Table 2. Cell parameters and phase transition temperatures of the solid solutions [Cp2Mo(dmit)+•][SbF−6 ](x)[PF−6 ](1−x).

x a (Å) b (Å) c (Å) V (Å3) T1 (K) T2 (K) TN (K)

Cp2Mo(dmit)PF6 8.954(1) 20.596(3) 10.112(3) 1864.9(6) 120 89 10.5

0.10 8.955(1) 20.612(1) 10.101(4) 1864.3(8) 120 86 10.0

0.20 8.956(1) 20.605(2) 10.133(4) 1870.0(8) 120 72 10.0

0.30 8.962(1) 20.612(3) 10.154(2) 1875.7(5) 120 66 10.0

0.34 120 61 10.0

0.35 123 63 10.0

0.36 123 10.0

0.40 8.969(1) 20.613(3) 10.159(2) 1878.1(6) 125 9.5

0.80 9.017(1) 20.703(2) 10.273(3) 1917.7(7) 138 8.0

0.98 159 7.5

Cp2Mo(dmit)SbF6 9.056(1) 20.816(4) 10.383(3) 1957.4(7) 175 7.5

Weissenberg photographs obtained from an home-made
diffractometer allowing a temperature control between 300
and 10 K. Experimental details are given in paper I. Only
representative solid solutions have been studied, they are
mentioned in Table 1.

Let us first recall the main results obtained for the pure
PF−6 and AsF−6 salts. In both compounds, a second order
phase transition is observed upon cooling at T1. A super-
lattice is stabilized below this temperature with a wave
vector q∗1 = (0, 1/2, 1/2)centered (using the monoclinic de-
scription above T1). Here the index “centered” indicates
that pseudo-extinctions are found although no real extinc-

tion is expected in the low temperature triclinic system.
This means a very small (i.e. not detectable) intensity
for some reflexions of the low temperature reciprocal lat-
tice. More precisely, the Bragg spots with h′ + l′ = 2n
(where n is an integer and h′, k′, l′ are the Miller indices
of the new triclinic lattice) are not detected. We will see in
the following the importance of this result to discuss the
phase diagram. At a lower temperature T2, a first order
phase transition is found for the PF−6 salt. It corresponds
to a discontinuous evolution of the wave vector of the su-
perlattice which becomes q2 = (0, 1/2, 0) below T2. As
far as the T1 second-order phase transition is concerned,
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Fig. 6. Normalized EPR linewidth jump at T2 in the
[Cp2Mo(dmit)+•][SbF−6 ](x)[PF−6 ](1−x) series.

the behaviour of the solid solutions is similar to the one
found for the pristine samples. This was expected from
EPR experiments which give a continuous extrapolation
of T1 between the PF−6 and the AsF−6 salts. The re-
sults are however more complex at lower temperature.
The solid solutions with x = 0.6, 0.7 and 0.9 behave
qualitatively like the pure PF−6 salt. First, a second-
order transition at T1 leads to a triclinic system with a
q∗1 = (0, 1/2, 1/2)centered superlattice. This order disap-
pears totally at T2 where a first-order transition gives rise
to the novel q2 = (0, 1/2, 0) superlattice. This behaviour
is illustrated in Figures 7a, b, c. In any case, the deduced
temperatures for the phase transitions are in agreement
with the EPR measurements. The small difference is due
to a less accurate temperature determination in the X-ray
experiments.

For x = 0.92, as shown in Figure 7d, the “centered” q∗1
superlattice also appears at T1, but a different behaviour
is observed below this temperature. As an example, a
“pseudo-extincted” reflexion (h′ + l′ = 2n with n = 0)
such as the (4, 1, 4̄) spot is almost undetectable above
60 K while between 60 and 40 K, it becomes observable
and its intensity increases as T decreases. In the same
temperature range, the intensity of the observed (4, 1, 5̄)
spot saturates. At T2 ≈ 40 K both intensities present a
discontinuity. However, none of them goes to zero and
the wave vector of the superlattice remains the same, i.e.
(0, 1/2, 1/2) down to 10 K. Thus, a new kind of first or-
der phase transition is observed at T2, between two phases
of the same symmetry, i.e. with the same superlattice
(0, 1/2, 1/2) (q1). None of them is strictly “centered” close
to T2, although we observe a phase transition between a
“quasi-centered” phase and a phase where all Bragg spots
are present. Therefore, the q∗1 = (0, 1/2, 1/2)centered su-
perlattice is simply a limit found in some parts of the
phase diagram.

At this point of the presentation, the most impor-
tant conclusion is the confirmation of the two transi-
tion lines suggested by EPR data. The first one is a

second-order transition line at T1 which is present for all
the samples. It corresponds to the condensation of the
q∗1 = (0, 1/2, 1/2)centered superlattice. The second one
is a first-order line at T2. The new important result is
that its nature changes around x∗ = 0.9. Below this value
one observes under cooling a transition towards the new
q2 = (0, 1/2, 0) superlattice. Above x∗, we rather obtain
a first-order phase transition between two phases with the
same superlattice wave-vector (0, 1/2, 1/2). Note that this
crossover around x∗ has been already mentionned from the
analysis of the EPR linewidth jump at T2.

2.4 Deduced phase diagrams

From the combined EPR and X-ray data, a phase dia-
gram can be now deduced for both series of solid so-
lutions. First, the location of the second-order line at
T1 which corresponds to the condensation of the q∗1 =
(0, 1/2, 1/2)centered superlattice has been determined.
Moreover, the nature of the first order line at T2 already
detected from EPR has been characterised by the X-ray
study in the AsF−6 series.

Let us first consider the [Cp2Mo(dmit)+•][AsF−6 ](x)

[PF−6 ](1−x) salts. As the low temperature superlattice
changes at x∗, we expect another transition line to sep-
arate below T2 the two corresponding phases [8]. This line
has not be directly observed either with EPR or from
X-ray studies although x∗ corresponds to the crossover
concentration discussed from Figure 4. This suggests that
this line may be approximately vertical. Moreover, its na-
ture is the same as the transition line found at T2 for
x < x∗ and thus probably a first-order line. The collec-
tion of all these data gives the phase diagram shown in
Figure 8a where the symmetry of the different phases has
been indicated. Note also that the (0, 1/2, 1/2) superlat-
tice is “centered” in most of the temperature domain lying
between T1 and T2.

A similar analysis can be made for the
[Cp2Mo(dmit)+•][SbF−6 ](x)[PF−6 ](1−x) series. In this
case, low temperature X-ray data are not available.
However, the topology of the phase diagram (Fig. 8b)
is clearly similar to the previous series. Furthermore,
from Figure 6, we can estimate x∗ around 0.24 and we
have located the end of the first order line at xc = 0.35.
As in the previous case, the evolution of the normalized
linewidth jump (Fig. 6) suggests that the first-order line
ends with a liquid/gaz-like critical point at xc.

We finally propose a unique phase diagram for the two
series (Fig. 9). Besides the high temperature phase (phase
I in the figure), three other phases are found. Two of
them (phases II and IV) have the same symmetry and ex-
hibit the same (0, 1/2, 1/2) superlattice (q1 or q∗1). They
are not qualitatively different but we use two different la-
bels to emphasize the special case of “pseudo-extinctions”
(pseudo-centered limit: phase II). The third one, phase
III corresponds to the q2 = (0, 1/2, 0) superlattice. This
very striking topology presents a clear analogy with the
phase diagram of a simple pure compound [9]. Indeed, the
analogs of phases II and IV would be respectively the gas
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Fig. 7. Temperature dependence of X-ray satellite spots intensity (normalized at saturation) in the
[Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) series; (a) x = 0.6, (b) x = 0.7, (c) x = 0.9, (d) x = 0.92.

and the liquid. Both phases belong to the fluid domain
and the ideal gas is a special limit where the mass den-
sity goes to zero. A first-order line separates an ideal gas
from a dense liquid far from the critical point. This lines
ends at the critical point where both fluids have the same
density. Phase III would be the analog of the solid phase.
We propose in the last part of this paper a quantitative
discussion of this phase diagram and its analogy with the
gaz/liquid/solid problem.

2.5 Antiferromagnetic resonance

As for the pristine salts antiferromagnetic resonance
(AFMR) gives information on the magnetic parameters
below the Néel temperature. Details on the experiment
are given in paper I. By rotating single crystals in simple
crystallographic planes, characteristic rotation patterns
(giving the resonance field as a function of the rotation
angle) are obtained. In the present work, we will essen-
tially discuss the PF−6 /AsF−6 series and compare rotation
patterns in the (bc∗) plane. Selected data are given in
Figures 10a-d.

For x = 0.4 (Fig. 10a), two “bubbles” are found, as ob-
served previously for the pure PF−6 salt. Each of them is
characteristic of AFMR when the experimental frequency
is smaller than Ω− [10]. The extremum corresponds to the
easy axis. As for the pristine salts, the presence of two bub-
bles confirms the twinning of the crystals. However, the
figure becomes more complex as x increases. Figures 10b
and 10c show that four bubbles are observed when x is
close to 0.9 (in fact above 0.65). The complexity increases
for x close to x = 1. For example, Figure 10d shows that
three pairs of bubbles are observed for x = 0.99. As in
paper I, we have fitted these results using the AFMR the-
ory [11,12]. All fits were made in the low temperature
limit (r = 1) and the two remaining parameters are B−
and B+ (proportional to the characteristic frequencies Ω−
and Ω+). The continuous lines give the best fits in Fig-
ures 10a-d. Moreover, we also deduce the angle 2θ between
the extrema of the two members of a pair (which have
identical values of B− and B+). When two (three as in
Fig. 10d) pairs are present, we deduce two (three) groups
of parameters, given in Table 1. Let us discuss the data.
Firstly, the anisotropy parameters B− and B+ have sim-
ilar values among the series. This is not surprising since
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Fig. 8. Deduced phase diagram; (a) in the
[Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) series, (b) in the
[Cp2Mo(dmit)+•][SbF−6 ](x)[PF−6 ](1−x) series.

the pristine salts also have very similar parameters. How-
ever, the differences are large enough to give different
shapes to the bubbles. For the pristine salts, the extrema
of the resonance field are roughly (3000 G - 9200 G)
and (3200 G - 7800 G) for the PF−6 and AsF−6 salts re-
spectively. As shown in Figure 10a, up to x = 0.6, the
pair of bubbles (B1) is similar to the one observed for
the pure PF−6 salt. The separation between the two pat-
terns is also the same 2θ = 18◦. Above this concentration
(x > 0.6), the first pair is still present with the same 2θ
separation but a new pair of bubbles (B2) appears with
different extrema (4000 G - 8500 G) and a separation
which depends on the AsF−6 concentration (see Fig. 11a).
For x = 0.99 (Fig. 10d), a weak third pair appears be-
sides these two pairs, very similar to the one observed for
the pure AsF−6 salt. This more complex behaviour which
remains marginal among the series may be due to the
presence of small domains of pure AsF−6 in the sample.
Ignoring this complication, we have plotted as a function

Fig. 9. Schematic phase diagram obtained from the experi-
mental studies of the two solid solution series.

of x the relative intensity of the resonance lines related
to B2 and B1 (Fig. 11b). Although this ratio always in-
creases with the AsF−6 concentration, a crossover is found
close to x = 0.92 where the superlattice wave-vector of the
low temperature phase is expected to change. Above this
concentration the angle separation between the B2 pair
increases more rapidly to reach continuously the value for
the pure AsF−6 salt (2θ = 78◦). This crossover may be as-
sociated with the presence of the vertical first order tran-
sition line mentioned above albeit no discontinuity can be
observed in Figure 11 around x = 0.92.

3 Discussion

The combined X-ray and magnetic studies indicate struc-
tural phase transitions. As the room temperature crystal
structure shows that the anions are disordered (two sta-
tistical positions are found: see paper I) it is natural to
assume that the anions are involved in the mechanism
of these phase transitions. However, because of the twin-
ning of the crystals, we do not know the low temperature
structure and the discussion will mostly rely on symmetry
arguments. To support these arguments, we will make use
of a simple model, whose aim is not to speculate about
the nature of the molecular displacements but rather to
illustrate the symmetry arguments.

To modelize the low temperature structures, we focus
on the anion positions for which we assume (in agreement
with structural data) two possible orientations labelled A
and B. These two orientations are given in Figure 12. The
quantitative modelisation requires the introduction of in-
teractions between pairs of “pseudo-spins” which mimic
the orientation degrees of freedom of the anions. As the
two possible superlattices have no component in the a di-
rection, a schematic representation is given in Figure 13a
only in the (bc) plane. Note that four different coupling
constants (Ji with i = 1 to 4) have to be defined to
describe all first-neighbours interactions.
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Fig. 10. AFMR rotation pattern in the (bc∗) for the [Cp2Mo(dmit)+•][AsF−6 ](x)[PF−6 ](1−x) series; (a) x = 0.4, (b) x = 0.9, (c)
x = 0.98, (d) x = 0.99. The continuous and dashed lines gives the fit with the AFMR theory [11,12].

3.1 Need for a compressible model

The above description has been extensively used for ex-
ample in the context of magnetic phase transitions [13].
Usually the underlying lattice is assumed to be rigid. This
is the so-called uncompressible Ising model which predicts
a second-order magnetic ordering [9]. If a finite but small
compressibility of the lattice is introduced, the results are
qualitatively similar. It is only above a critical value of
the compressibility that a first order phase transition is
predicted [14,15].

In the present case, the problem is different. Figure 13b
shows a possible ordered state with a doubling of the unit
cell along the b axis, corresponding to the (0, 1/2, 0) su-
perlattice. Because of the symmetry of the high temper-
ature phase, there is a perfect cancellation between the
two J1 or J2 terms (i.e. the A-A and A-B interactions are
just opposite terms). If one imagines a small distortion
of the lattice which removes this degeneracy, the gain of
interaction energy is proportional to the amplitude of the
distortion as the loss for the lattice elastic energy is only

quadratic. It is therefore always favorable to lower the lat-
tice symmetry when the anions get ordered. This means
that the model for the structural distortions is necessar-
ily compressible. This argument explains why the crys-
tal structure becomes triclinic below T1 with unit cell
parameters changing rapidly below the phase transition
(see paper I).

3.2 How to describe the lattice distortion

As previously mentioned, compressible models are some-
times considered. In these models the lattice distortion is
a secondary order parameter coupled to the primary mag-
netic order parameter. We show in the following that the
present problem is specific as two independent secondary
order parameters should be considered.
We can illustrate this argument with a simple model.
Starting from Figure 13a, we first consider the anion order-
ing without introducing any lattice distortion. The only
information to specify is therefore the state (A or B) for
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Fig. 11. (a) Angle separation (2θ) between each pair of bub-
bles, (b) relative intensity between B1 and B2 (internal and
external bubbles, see Fig. 10 and text).

every site. The result is given in Figures 14a and 14b re-
spectively for the (0, 1/2, 0) and (0, 1/2, 1/2) superlattice.
The centers of symmetry are shown as black dots. Note
from Figure 12b that anions which are related by a center
of symmetry are in the same state (A or B). We should
now introduce a lattice distortion. Any kind of displace-
ment which removes the degeneracy discussed above is ac-
ceptable to point out symmetry arguments. For example,
we have chosen to rotate centrosymmetric pairs of anions.
Figures 14c and 14d give the obtained result respectively
for the (0, 1/2, 0) and (0, 1/2, 1/2) superlattice. In this
description, the rotation angles play the role of secondary
order parameters.

Let us first discuss the (0, 1/2, 0) case (Fig. 14c).
Only one angle is required to describe the distortion. As
in most of the compressible problems only one secondary
order parameter should be introduced. If we now consider
the (0, 1/2, 1/2) superlattice (Fig. 14d) and because of
the larger unit cell, up to three different independent an-
gles can be introduced. We can go deeper in this discus-
sion taking profit of selected experimental results. First,

Fig. 12. The two possible orientations (A and B) of the octa-
hedral anions, invariance by inversion (• = inversion center).

Fig. 13. (a) Illustration of the pair interactions between an-
ions, (b) a possible ordered state to show the cancellation be-
tween J1 or J2 terms.

X-ray data show that the (0, 1/2, 1/2) superlattice is “cen-
tered” in the domain II (see Fig. 9). We can in fact pro-
duce this special situation in our model choosing α1 = α2

and α3 = 0. The corresponding molecular organization is
given in Figure 15a. In this figure the “pseudo-centers”
are shown: they are not imposed by the crystal symme-
try but are rather a consequence of special values of the
distortion angles. Let us now consider the AFMR data.
As the anisotropy is obtained by a summation of dipo-
lar interactions between the spins, the characteristics of
the AFMR are mainly sensitive to the local organization
of the phase [16]. In that respect, the continuity observe
when going from x = 0.9 (phase III) to x = 0.92 (phase
IV) implies that the local order is similar in the two cases
although the long range organization is different. In other
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Fig. 14. (0, 1/2, 0) (a) and (0, 1/2, 1/2) (b) ordering in an incompressible model. (c) and (d): same as (a) and (b) respectively
when a distortion is introduced.

words, the molecular positions should be similar at the
local scale at low temperature in phases III and IV. This
conclusion is also in agreement with EPR data which do
not allow us to discriminate between the II-III and the II-
IV phase transitions (similar values of the EPR linewidth
are found in phases III and IV). This remark brings more
importance to the analogy with the phase diagram of a
simple pure compound: in fact the local order is similar
in a liquid and a solid (the mass density is also similar)
although the long range order is different. Following our
simple modelization, we are now looking for another spe-
cial organization of the (0, 1/2, 1/2) superlattice close to
the one shown in Figure 14c for the (0, 1/2, 0) order.
Figure 15b gives the answer: it is obtained when α1 = α3

and α2 = 0. Finally, to extrapolate between the two ex-
treme situations shown in Figure 15, one should consider
at least two independent angles, i.e. two independent sec-
ondary order parameters.

3.3 Landau theory of the phase diagram

The aim of the preceding discussion was not to imagine
a realistic microscopic model but rather to point out the
necessary ingredients of any model. In the frame of the
Landau theory, we want to determine the free energy as a
function of the relevant order parameters. In this descrip-
tion, one free energy is associated to each kind of super-
lattice, the “optimum wave-vector” being determined by

the comparison of the free energy of the different solutions
[17].

As already mentioned, in the most general case of the
(0, 1/2, 1/2) superlattice, the compressible description re-
quires the introduction of two independent secondary pa-
rameters ρ1 and ρ2 in addition to the primary order pa-
rameter m. Thus, the Landau free energy reads:

∆F = −J(ρ1, ρ2)m2 − TS(m) +Eelas(ρ1, ρ2).

The three terms are respectively the “magnetic” (interac-
tion), entropic and elastic contributions. Let us now con-
sider a development of the different terms in power of the
order parameters. The elastic energy is quadratic and with
a proper definition of ρ1 and ρ2 we can write:

Eelas(ρ1, ρ2) =
1

2χ1
ρ2

1 +
1

2χ2
ρ2

2

where χ1 and χ2 are the compressibilities of the possi-
ble modes of distortion. In the same way, the interaction
coupling constant J reads (up to quadratic order):

J(ρ1, ρ2) = J0 + j1ρ1 + j2ρ2 + η1ρ
2
1 + η2ρ

2
2 + γρ1ρ2.

As ρ1 and ρ2 were defined to diagonalize the elastic en-
ergy, a cross term generally does exist in this development.
Note that the ηi terms are small compared to the elastic
energy and can thus be neglected. At this point, one may
minimize the free energy relative to ρ1 and ρ2 to obtain
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Fig. 15. (a) “Pseudo-centered” distortion in our simple model, (b) distortion for the (0, 1/2, 1/2) superlattice with molecular
positions of Figure 14c (which shows the (0, 1/2, 0) distorted superlattice).

an effective free energy only dependent on the primary
order parameter. One gets:

∆F
0, 1/2, 1/2
eff = −J0m

2 − TS(m)−
1

2
(χ1j

2
1 + χ2j

2
2)m4

− γ j1j2χ1χ2m
6

where the entropy S(m) can also be developed in power
of m. The essential effect of the finite compressibilities
is a renormalization of the fourth and sixth order terms
in the development. The renormalization of the sixth or-
der term is at the origin of the first-order line and of the
liquid/gaz-like critical point [17]. The starting point for
this discussion can be a development of the free energy
which reads :

∆F
0, 1/2, 1/2
eff = A2m

2 +A4m
4 +A6m

6 +A8m
8.

Compared with the previous form of ∆F
0, 1/2, 1/2
eff the con-

stant term −TS(0) has been omitted. Figure 16a gives
the plot of this function for representative values of the
parameters (taking A8 = 1 and A4 = 0.375). The critical
point is then obtained for A2 = −1/16 and A6 = −1. Note
that this point is found as A4 is still positive, i.e. when the
renormalization of the sixth order term is the dominant
effect. As a consequence, the model predicts at the same
time a second-order phase transition (for A2 = 0). This is
in agreement with the experiment as the I-II phase tran-
sition line is always continuous. One finds the first-order
transition line for special values of the parameters. When
A8 = 1, its equation reads:

A2 =
A4A6

2
−
A3

6

8
·

Figure 16a also shows the typical shape of the free en-
ergy along this line. Far from the critical point, we quickly
obtain an equilibrium between two phases with very dif-
ferent values of the order parameter, i.e. a strongly first
order phase transition (see Fig. 16b). The small value of
m in phase II (the equivalent of a gas) indicates a “quasi-
centered” situation while a larger order parameter is found
in phase III (equivalent to a liquid). The deduced theoret-
ical phase diagram at this point of the discussion has the

topology shown in Figure 16c. For simplicity we have kept
A4 constant considering that the main effect of alloying is
to change A6. A simultaneous modification of A4 and A6

would not change the topology. The main conclusion re-
mains that the first order transition line is found as A6

becomes more and more negative. To mimic the experi-
mental phase diagram, it is quite natural to assume that
the lattice compressibility changes with x and we con-
clude that the substitution of the smaller PF−6 for AsF−6
or SbF−6 increases the renormalization of the sixth order
term in the Landau development probably through an in-
crease of the lattice compressibility.

In the competition with the (0, 1/2, 0) superlattice and
because of the different wave-vector, different parameters
should in principle be introduced. However, as we want to
discuss the phase diagram topology far away from the crit-
ical point, i.e. when the II-IV or II-III phase transitions
are strongly first order, we can use simplified arguments.
As for a gas phase, we expect the entropic contribution to
become quickly dominant in phase II. As the order param-
eter at thermal equilibrium becomes small, we can write
∆F II

eff ' −TS(0) (omitting the small correction coming
from the finite but small value of m). In the same way,
“enthalpic” (interaction) terms are essential to describe
phases III and IV. The order parameter can thus be con-
sidered as almost saturated (equal to 1 with a proper nor-
malization). We have for example:

∆F III
eff ' −J0 −

1

2
(χ1j

2
1 + χ2j

2
2 )− γj1j2χ1χ2.

A similar expression would be obtained for ∆F IV
eff with

different coefficients. At this approximation, ∆F III
eff and

∆F IV
eff are only functions of x (through the dependence of

the compressibilities with the anion size). Following this
argument, the equation of the III-IV transition line reads
∆F III

eff = ∆F IV
eff , i.e. it is a vertical line in the (x, T ) plane.

In the same way, the equation for the II-III and II-IV
transition lines are respectively:

T = −
∆F III

eff

S(0)
and T = −

∆F IV
eff

S(0)
·



458 The European Physical Journal B

Fig. 16. (a) Landau free energy of the (0, 1/2, 1/2) superlat-
tice for selected A6, A2 values and for A4 = 0.375 and A8 = 1,
(b) discontinuity of the square of the order parameter along the
first order line (∆(m2) = m2

2 −m
2
1 where m1 and m2 are the

values of the order parameter for the two phase in equilibrium),
(c) deduced phase diagram in (A6, A2) space for A4 = 0.375
and A8 = 1 (the continuous line is first order while the dashed
line is second order).

They may be almost horizontal lines if the free energies
∆F III

eff and ∆F IV
eff are only weakly dependent on the anion

size.

In conclusion, the above discussion explains the main
characteristics of the experimental phase diagram. The

major argument is the need for a compressible model.
Moreover, we have shown that the combination of two
independent modes of distortion brings the observed dis-
tinctive topology of the phase diagram. Finally, the (0,
1/2, 0) superlattice is stabilized for enthalpic reasons, for
example when the lattice compressibility becomes large
enough. It is also important to note that the above the-
oretical arguments are independent of microscopic details
which would however be relevant to discuss the structure
of the phase diagram in more details.

4 Concluding remarks

We have investigated in this paper the physical proper-
ties of two series of solid solutions. This was the experi-
mental answer for a better understanding of the physical
properties of the [Cp2Mo(dmit)+•][X−] salts, and partic-
ularly their low temperature structural phase transitions.
The room temperature crystal structure of these materi-
als shows that the octahedral anions are statistically disor-
dered. A possible ordering may explain why the room tem-
perature orthorhombic symmetry is not preserved upon
cooling. As a consequence, a complex phase diagram is
found in these series with the possibility of several succes-
sive structural phase transitions.

The understanding of these instabilities is important
as the electronic properties (for example the low temper-
ature magnetic ordering) depends on the interactions and
therefore on the crystal structure. Although the low tem-
perature structure is missing, we have proposed a Landau
theory to explain the phase diagram. The main argument
is the need for a compressible model, the liquid/gaz-like
critical point found in one of the low symmetry phases
being explained by the coupling with two modes of dis-
tortion. Only a few examples of solids of this kind have
been described experimentally [17] although similar argu-
ments have been used to modelize the phase diagram of
surfactants in solution [18]. Finally it should also be noted
that these materials are among the few organic materials
where a disorder of centrosymmetrical anions have been
reported [19].

As a general property among the series, the magnitude
of the magnetic exchange interactions is worthnoting. One
consequence is the systematic occurrence of a low temper-
ature antiferromagnetic ground state. This new series may
thus be the starting point for the discovery of new mate-
rials with attractive electronic properties.

In the future, it would be interesting to study new
materials with anions of different symmetry and compare
their crystal structure and physical properties with the
one of the present salts. The other substitution may con-
cern the cation radical itself where oxygen or selenium
atoms may be substituted for one or several sulfur atoms
of the dmit2− ligand.
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